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ABSTRACT

CONTINUITY PROBLEM FOR BACKWARD STOCHASTIC DIFFERENTIAL
EQUATIONS WITH SINGULAR NONMARKOVIAN TERMINAL

CONDITIONS AND RANDOM TERMINAL TIMES

Sharoy Augustine Samuel,

Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Ali Devin Sezer

July 2021, 72 pages

We study a class of nonlinear BSDEs with a superlinear driver process f adapted to

a filtration F and over a random time interval [0, S] where S is a stopping time of F.

The filtration is assumed to support at least a d-dimensional Brownian motion as well

as a Poisson random measure. The terminal condition ξ is allowed to take the value

+∞, i.e., singular. Our goal is to show existence of solutions to the BSDE in this

setting. We will do so by proving that the minimal supersolution to the BSDE is a so-

lution, i.e., attains the terminal values with probability 1. We focus on non-Markovian

terminal conditions of the following form: 1) ξ1 = ∞·1{τ≤S} and 2) ξ2 = ∞·1{τ>S}

where τ is another stopping time. We call a stopping time S solvable with respect to

a given BSDE and filtration if the BSDE has a minimal supersolution with terminal
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value ∞ at terminal time S. The concept of solvability plays a key role in many of

the arguments. We also use the solvability concept to relax integribility conditions

assumed in previous works for continuity results for BSDE with singular terminal

conditions for terminal values of the form ∞ · 1{τ≤T} where T is deterministic. We

provide numerical examples in cases where the solution is explicitly computable and

a basic application in optimal liquidation.

Keywords: BSDE in Finanance, Non Markovian Singular Terminal Value, Control

Problem, Continuity Problem
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ÖZ

MARKOV OLMAYAN TEKİL SON DEĞERLİ VE RASTGELE SON ZAMANLI
GERİYE DOĞRU STOKASTİK DİFERANSİYEL DENKLEMLER İÇİN

SÜREKLİLİK PROBLEMİ

Sharoy Augustine Samuel,

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ali Devin Sezer

Temmuz 2021, 72 sayfa

F = {Ft, t ∈ [0,∞)} en azından d-boyutlu bir Brown hareketi ve Rm \ {0} üze-

rinde bir Poisson rastgele-ölçümü kapsayan bir filtrasyon, S bu filtrasyonun bir durma

zamanı olsun. Bir Markov sürecin bir kümeden ilk çıktığı andaki pozisyonunun de-

terministik bir fonksiyonu olan rastgele değişkenlere “Markov,” ∞ değerini alabilen

rastgele değişkenlere de “tekil” (singular) diyelim. Bu tezin amacı, rastgele [0, S]

zaman aralığında, F filtrasyonuyla uyumlu (adapted) doğrusal-üstü (super-linear) sü-

rücü bir f sürecinin tanımladığı geriye doğru stokastik diferansiyel denklemin (Back-

ward stochastic differential equations (BSDE)) tekil ve Markov olmayan son değerler

için çözümlerini çalışmaktır. τ , F filtrasyonunun başka bir durma zamanı olsun. İki
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çeşit son değer için çözüm varlığı ispatlanmıştır: ξ1 = ∞·1{τ≤S} ve ξ2 = ∞·1{τ>S}.

Bu son değerler için çözüm varlığı, aynı son değerler için var olduğu bilinen minimal

üstçözümlerin S’de sürekli oldukları ve limitlerinin son değere eşit olduğu ispat edi-

lerek gösterilmiştir. BSDE’nin S anında ∞ değerini alan bir üstçözümü varsa S’ye

“çözülebilir” (solvable) dedik. Tezimizdeki argümanların birçoğu bu kavram üzerine

kuruludur. Bu kavram kullanılarak geçmişte elde edilen bazı tekil son değerli çö-

zümlerin daha genel şartlar altında bulunabileceği de gösterilmiştir. Çözümlerin açık

olarak ifade edilebileceği durumlar için sayısal örnekler ve çözümlerin simülasyon

grafikleri verilmiştir. Son olarak çalıştığımız BSDE’lerin matematiksel finansta opti-

mal pozisyon kapatma sorusuna bir uygulaması anlatılmıştır.

Anahtar Kelimeler: Finansta BSDE, Markov olmayan Tekil son değerli, Konrollü
Problem, Süreklilik Problemi
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CHAPTER 1

INTRODUCTION

A backward stochastic differential equation (BSDE) is a stochastic differential equa-

tion (SDE) with a prescribed terminal condition. They have been intensively studied

since the seminal papers [5, 31]; they arise naturally in stochastic optimal control

problems (see among others [38]), they provide a probabilistic representation of semi-

linear partial differential equations (PDE) extending the Feynman-Kac formula ([32])

and they have found numerous applications in finance and insurance [7, 10].

If the driver term of the BSDE has superlinear growth, the solution of the BSDE can

blow up in finite time, this allows one to specify ∞ as a possible terminal value for

such BSDE; when the terminal value is allowed to take ∞ it is called “singular.”

The works [1, 22, 34, 37] study nonlinear BSDE with singular terminal condition at

a deterministic terminal time T . Such BSDE generalize parabolic diffusion-reaction

PDE with singular boundary conditions and they arise naturally in class of stochastic

optimal control problems with terminal constraints [3, 15, 22]; we further comment

on this connection in Chapters 2 and 6.

This thesis focuses on BSDE with singular terminal conditions over a random time
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horizon. We do this within the general framework for BSDE with terminal singular

values established in [21, 22, 23] and consider BSDE of the following form

dYt = −f(t, Yt, Zt, Ut)dt+ ZtdWt +

∫
E
Ut(e)π̃(de, dt) + dMt, YS = ξ, (1.1)

where W is a d-dimensional Brownian motion and π̃ is a compensated Poisson ran-

dom measure on a probability space (Ω,F ,P) with a filtration F = (Ft)t≥0; the

unknown that is sought is the quadruple (Y, Z, U,M). The filtration F is supposed

to be complete and right continuous. The solution component M is required to be a

local martingale orthogonal to π̃. The function f : Ω × R × Rd × B2
µ → R is called

the generator (or driver) of the BSDE. Finally S is a stopping time of the filtration F

and ξ is an FS measurable random variable, which is singular, i.e., P({ξ = ∞}) > 0.

Precise conditions on all of these terms are spelled out in sections 1.3 and 1.4 below.

A quadruple (Y, Z, U,M) is said to be a supersolution of (1.1) if it satisfies the first

equation in (1.1) and

lim inf
t→+∞

Yt∧S ≥ ξ, almost surely, (1.2)

holds. A supersolution (Y min, Zmin, Umin,Mmin) is called minimal if Y min ≤ Y

for any other supersolution (Y, Z, U,M). We say (Y, Z, U,M) solves the BSDE with

singular terminal condition ξ if it satisfies the first equation in (1.1) and

lim
t→+∞

Yt∧S = ξ; (1.3)

i.e., to go from a supersolution to a solution we need to replace the lim inf in (1.2) with

lim and ≥ with =. The condition (1.3) means that the process Y is continuous at time

S; for this reason we refer to the problem of establishing that a candidate solution

satisfies (1.3) as the “continuity problem”. This thesis is focused on the study of

this problem for the terminal values we describe in the next section. Just as BSDE
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over deterministic time intervals generalize parabolic PDE, BSDE over random time

intervals are generalizations of elliptic PDE; we provide further comments on this

connection, on the motivation for the study of BSDE over random time horizon with

singular terminal values and on the implication of continuity results for BSDE theory

as well as constrained stochastic optimal control at the end of this chapter.

We call a terminal condition “Markovian” if it is of the form ξ = g(ΞS) where,

g : Rd 7→ R+ ∪ {∞}, Ξ is a Markov diffusion process and S is the first time Ξ hits

a smooth ∂D, D ⊂ Rd. For such exit times, existence of minimal supersolutions for

(1.1) are proved in [22] for arbitrary terminal condition (see section 1.4 below). The

work [35] proves that these minimal supersolutions are in fact solutions for the case

F = FW and for the specific generator f(y) = −y|y|q−1 and for Markovian terminal

conditions. To the best of our knowledge, the continuity problem, that is the existence

of the limit lim
t→+∞

Y min
t∧S and the a.s. equality (1.3):

lim
t→+∞

Y min
t∧S = ξ (1.4)

has been studied only in [35], under the Brownian setting, for f(y) = −y|y|q−1 and

in the Markovian setting, ξ = Φ(ΞS) and when S is the first exit time of Ξ from a

smooth domain. The works [21, 23] develop solutions to (1.1) when ξ belongs to

some integrability space. The goal of the present work is to prove that the minimal

supersolution of (1.1) satisfies (1.3) (and therefore is a solution) for two classes of

non-Markovian singular terminal conditions under several assumptions on S. We

outline these classes and assumptions in the following paragraphs. Markovian sin-

gular terminal conditions are treated in [36, Section 4] within the framework used in

this thesis.
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1.1 Outline of results

In two previous works [1] and [37] that prove continuity results for deterministic

terminal times, two of the main ingredients are the minimal supersolution Y min,∞ with

terminal condition ∞ at terminal time and the apriori upperbounds on supersolutions;

both of these, are readily available in the prior literature for deterministic terminal

times (for the one dimensional Brownian case treated in [37], Y min,∞ is deterministic

and has an explicit formula). For random terminal times the existence of Y min,∞ and

apriori upperbounds are known only for exit times of Markov diffusions from smooth

domains. One of the main ideas of the present work is to impose the existence of

Y min,∞ as an assumption on the stopping time S and base most of our arguments

on this assumption. We call the terminal stopping time S solvable with respect to

the BSDE (1.1) if there exists a supersolution to the BSDE with terminal value ∞

at terminal time S (see Definition 3), deterministic times and exit times of Markov

diffusion processes are solvable for a wide range of BSDE; times that have a strictly

positive density around 0 are not solvable [22]. Many of our arguments are based on

this solvability concept; some basic consequences of solvability are given in Chapter

3. In particular, if S is solvable, the BSDE (1.1) has a minimal supersolution for any

singular terminal condition ξ ≥ 0 (Lemma 1). In addition to S being solvable, in

many arguments we assume F to be left continuous at S as defined in (definition 4)

for the following reason. Because the filtration F is assumed to be general (apriori

only completeness and right-continuity is assumed) there is no way to control the

jumps of the additional local martingale component M of the solution at the terminal

time. To avoid such jumps, we suppose that F is left-continuous at time S.

We now indicate the main results of the present work.
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This thesis focuses on the continuity problem for non-Markovian singular terminal

values. Chapters 4 and 5 focus on the continuity problem for non-Markovian termi-

nal conditions of the form ξ1 = ∞·1{τ≤S} (Chapter 4) and ξ2 = ∞·1{τ>S} (Chapter

5) where τ is another stopping time of F. The results in these chapters generalize

results from [37] (the one dimensional Brownian case) and [1] (the general filtration,

driver case) treating same type of terminal conditions where S is assumed to be deter-

ministic. Events of the form {τ ≤ S} naturally arise when one modifies constraints

on stochastic optimal control problems based on the values the state process of the

problem takes. We refer to [1, 37] for more comments on why we pay particular atten-

tion to these type of non-Markovian terminal conditions. Solution of the continuity

problem for general terminal conditions of the form ∞ · 1A for arbitrary A ∈ FS is

an open problem even for the one dimensional Brownian case and S deterministic.

Chapter 4 provides two arguments to prove

lim
t→+∞

Y min
t∧S = ξ1. (1.5)

The first one is an adaptation of the argument given for the same type of terminal

condition in [1]. It involves the construction of an auxiliary linear process that domi-

nates Y min and that is known to have the desired limit property at the terminal time S.

The main assumption on τ for the construction of the upperbound in [1] is that τ has

bounded density at the terminal time; in the current setting this is replaced with the

assumption that the random variable 1{τ≤S}Y
∞
τ has a bounded ϱ-moment for some

ϱ > 1 (see (4.1)). In Proposition 1 we show that if S is the first exit time of a Markov

diffusion from a smooth bounded region and τ is a stopping time independent of S

then (4.1) is satisfied. The other main ingredient in the construction of the upperbound

process in [1] is the apriori upperbounds on the supersolution of BSDE; in the cur-

5



rent context this is replaced by the solvability assumption on S. Section 4.2 presents

a new argument for the terminal value ξ1 that is completely based on the original

BSDE (i.e., it doesn’t involve the solution of an auxiliary linear BSDE). To simplify

arguments this section assumes F to be generated only by the Brownian motion W .

The only assumption on τ is that it be solvable. Let Y τ,∞ be the supersolution of the

BSDE with terminal condition ∞ at terminal time τ . The main idea of this argument

is the use of the process Y τ,∞ as an upperbound to prove (1.5). Working directly with

the original BSDE in constructing upperbounds can lead to less stringent conditions

on model parameters. As an example, we consider in Section 4.3 the case S = T

and τ = inf{t : |Wt| = L} which was originally studied in [37] using essentially a

special case of the argument based on the linear auxiliary process which requires the

q parameter in assumption (B2) to satisfy q > 2. The new proof given Section 4.3

based on the new argument based on solvable stopping times establishes (1.5) for the

minimal supersolution assuming only q > 1; the proof uses explicit solutions of an

associated ODE with singular boundary values. Section 4.4 we present figures of the

sample paths of Y based on the explicit solution of the ODE presented in the previous

section.

The argument in Chapter 5 that proves that the minimal supersolution corresponding

to ξ2 is in fact a solution follows closely the argument given for the same type of

terminal condition in [1] for the case S = T deterministic. The assumptions in this

chapter are: S is solvable and P(S = τ) = 0; no solvability is required for τ. To

simplify arguments F is assumed to be generated by the Brownian motion only.

In Chapter 6 we present a finance application: the question is that of an optimal

liquidation (formulated within the classical Almgren-Chriss framework ([16, Chapter
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3]), the goal is to achieve full liquidation exactly when the price process hits a target

level. The price is assumed to be a simple Brownian and the criterion optimized is the

expected cost of closing the position. We also provide several numerical examples of

the computed optimal liquidation algorithm.

1.2 Implications for PDE, stochastic optimal control and BSDE theory

BSDE with random terminal times are a generalization of elliptic semi-linear PDE

(extension of the Feynman-Kac formula, see [6, 30, 32]). The works [8, 24, 25, 26]

show that the solution of some of these PDE can exhibit a singularity of the following

form on the boundary of the domain D

lim
x→∂D

u(x) = +∞. (1.6)

This boundary behavior generalizes to

lim
t→+∞

Yt∧S = +∞

for BSDE of the form (1.1); the clearest connection between (1.6) and the last condi-

tion arises when S is a first hitting time of a Markov diffusion process, this connection

is treated in detail in [36, Section 4].

Minimal supersolutions of BSDE of the type (1.1) with ∞-valued terminal values at

random terminal times can also be used to express the value function of a class of

stochastic optimal control problems over a random time horizon [[0, S]] with terminal

constraints of the form 1A · qS = 0, for some A ∈ FS , where q is the controlled

process. We discuss this connection further in Chapter 2 and Chapter 6.

Strengthening (1.2) to (1.3) (i.e., going from a supersolution to a solution) has impli-
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cations both for BSDE theory and for stochastic optimal control applications. Con-

sider two distinct terminal values ξ1 and ξ2; with (1.2) it is impossible to tell whether

the corresponding minimal supersolutions are distinct. Whereas (1.3) guarantees that

distinct solutions Y 1 and Y 2 correspond to distinct terminal values ξ1 and ξ2. In

stochastic optimal control / finance applications a non-tight optimal control (corre-

sponding to strict inequality in (1.2)) can be interpreted as a strictly super-hedging

trading strategy. Continuity results overrule such strategies. For more comments on

these points we refer the reader to [1].

The next two sections give the definitions, assumptions and results we employ from

previous works (Section 1.3 concerns integrable terminal conditions and Section 1.4

concerns singular terminal values). The only novelty is Definition 3, the definition

of a solvable stopping time. Section 1.5 summarizes results that are already available

in the current literature on the existence of solutions of BSDE with singular terminal

conditions at random terminal times. We comment on possible future work in the

Conclusion (Chapter 7).

1.3 Integrable data

Let us start with the definition of solution for BSDE (1.1).

Definition 1 (Classical solution). A process (Y, Z, U,M) = (Yt, Zt, Ut,Mt)t≥0, such

that

• Y is progressively measurable and càdlàg ,

• Z is a predictable process with values in Rd,

8



• M is a local martingale orthogonal to W and π̃,

• U is also predictable and such that for any t ≥ 0

∫ t

0

∫
E
(|Us(e)|2 ∧ |Us(e)|)µ(de) < +∞,

is a solution to the BSDE (1.1) with random terminal time S with data (ξ; f) if on the

set {t ≥ S} Yt = ξ and Zt = Ut = Mt = 0, P-a.s., t 7→ f(t, Yt, Zt, Ut)1t≤T belongs

to L1
loc(0,∞) for any T ≥ 0, the stochastic integrals with respect to W and π̃ are

well-defined and, P-a.s., for all 0 ≤ t ≤ T ,

Yt∧S = YT∧S +

∫ T∧S

t∧S
f(u, Yu, Zu, ψu)du−

∫ T∧S

t∧S
ZudWu

−
∫ T∧S

t∧S

∫
E
Uu(e)π̃(de, du)−

∫ T∧S

t∧S
dMu. (1.7)

For precise definitions of the stochastic integral with respect to π̃ and orthogonality,

we refer to [17].

Theorem 3 of [21, 23], ensures the existence and uniqueness of a classical solution,

under some conditions on the terminal value ξ and on the generator f . Let us state

these conditions and following them the theorem (Theorem 1 below).

Firstly, the following integrability condition is assumed: for some r > 1

E
[
erρS|ξ|r +

∫ S

0

erρt|f(t, 0, 0,0)|rdt
]
< +∞. (1.8)

The constant ρ depends on r and on the generator f (see Remark 2). We suppose that

f : Ω× [0, T ]× R× Rm ×B2
µ → R is a random measurable function, such that for

any (y, z, ψ) ∈ R × Rm ×B2
µ, the process f(t, y, z, ψ) is progressively measurable.

For notational convenience, we write f 0
t = f(t, 0, 0,0), where 0 denotes the function

9



mapping E to 0 ∈ R. The space B2
µ is defined1 as follows:

B2
µ =


L2
µ if r ≥ 2,

L1
µ + L2

µ if r < 2,

where Lpµ = Lp(E , µ;R) is the set of measurable functions ψ : E → R such that

∥ψ∥pLp
µ
=

∫
E
|ψ(e)|pµ(de) < +∞.

The next conditions are adapted from [22]:

(A1) The function y 7→ f(t, y, z, ψ) is continuous and monotone: there exists χ ∈ R

such that a.s. and for any t ≥ 0 and z ∈ Rm and ψ ∈ B2
µ

(f(t, y, z, ψ)− f(t, y′, z, ψ))(y − y′) ≤ χ(y − y′)2.

(A2) For every j > 0 and n ≥ 0, the process

Υt(j) = sup
|y|≤j

|f(t, y, 0,0)− f 0
t |

is in L1((0, n)× Ω).

(A3) There exists a progressively measurable process κ : Ω× [0, T ]×E ×R×Rm×

(B2
µ)

2 → R such that for any (y, z, ψ, ϕ), with κ(·, ·, y, z, ϕ, ψ) = κy,z,ψ,ϕ· (·),

f(t, y, z, ψ)− f(t, y, z, ϕ) ≤
∫
E
(ψ(e)− ϕ(e))κy,z,ψ,ϕt (e)µ(de),

with P ⊗ Leb ⊗ µ-a.e. for any (y, z, ψ, ϕ), −1 ≤ κy,z,ψ,ϕt (e) and |κy,ψ,ϕt (e)| ≤

ϑ(e) where ϑ belongs to the dual space of B2
µ, that is L2

µ or L∞
µ ∩ L2

µ.

(A4) There exists a constant Lz such that a.s.

|f(t, y, z, ψ)− f(t, y, z′, ψ)| ≤ Lz|z − z′|
1 For the definition of the sum of two Banach spaces, see for example [20]. The introduction of B2

µ is
motivated in [23].
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for any (t, y, z, z′, ψ).

Remark 1. We can replace (A3) by the Lipschitz condition: there exists a constant

Lϑ such that

|f(t, y, z, ψ)− f(t, y, z, ϕ)| ≤ Lϑ∥ψ − ϕ∥B2
µ
. (1.9)

As explained at the beginning of [21, Section 5], (A3) implies (1.9) with Lϑ equal

to the norm ∥ϑ∥(B2
µ)

∗ of ϑ in the dual space of B2
µ. However (A3) is sufficient to

ensure comparison principle for the solution of BSDEs (see [32, Proposition 5.34],

[7, Theorem 3.2.1] or [21, Remark 4] ).

We denote

K2 =
1

2
(L2

z + L2
ϑ).

Remark 2. Recall the constants r and ρ appearing in (1.8). The constant ρ satisfies

ρ > ν = ν(r) :=


χ+K2 if r ≥ 2,

χ+ K2

r−1
+

L2
ϑ

ε(Lϑ,r)
if r < 2,

(1.10)

where the constant 0 < ε(Lϑ, r) < r− 1 depends only on Lϑ and r (see [23], Section

4). The additional term in ν disappears if the generator does not depend on the jump

part ψ (that is, if Lϑ = 0). Even if we can not compute ε explicitly, we know that

0 < ε ≤ (r − 1)
(
2(α(Lϑ, r) + 1)2 − 1

)− 2−r
2 ,

and α(Lϑ, r) has to be chosen such that for any x ≥ α(Lϑ, r),

1

2r/2
xr − 2r/2 − 1− r(2Lϑ + 1)x ≥ 0.

The right side is an increasing function with respect to r ∈ (1, 2) and decreasing with

respect to Lϑ ≥ 0. Hence when r is close to one and Lϑ is large, ε is very small and

thus ρ becomes large.
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In [21, 23], a second integrability condition is supposed:

E
[∫ S

0

erρt|f(t, e−νtξt, e−νtηt, e−νtγt)|rdt
]
< +∞, (1.11)

where ξt = E(eνSξ|Ft) and (η, γ,N) are given by the martingale representation:

eνSξ = E(eνSξ) +
∫ ∞

0

ηsdWs +

∫ ∞

0

∫
E
γs(e)π̃(de, ds) +NS

with

E

[(∫ ∞

0

|ηs|2ds+
∫ ∞

0

∫
E
|γs(e)|2π(de, ds) + [N ]S

)r/2]
< +∞.

We now state [21, 23, Theorem 3]:

Theorem 1. If (A1) to (A4) hold and ξ and f 0 satisfy assumptions (1.8) and (1.11),

then the BSDE (1.1) has a unique solution (Y, Z, U,M) in the sense of Definition 1

such that for any 0 ≤ t ≤ T

E

[
erρ(t∧S)|Yt∧S |r +

∫ T∧S

0

epρs|Ys|rds+
∫ T∧S

0

erρs|Ys|r−2|Zs|21Ys ̸=0ds

]

+E

[∫ T∧S

0

erρs|Ys−|r−21Ys− ̸=0d[M ]cs

]

+E

[∫ T∧S

t∧S

∫
E
erρs

(
|Ys−|2 ∨ |Ys− + Us(e)|2

)r/2−1
1|Ys−|∨|Ys−+Us(e)|≠0|Us(e)|2π(de, ds)

]

+E

 ∑
0<s≤T∧S

erρs|∆Ms|2
(
|Ys−|2 ∨ |Ys− +∆Ms|2

)r/2−1
1|Ys−|∨|Ys−+∆Ms|≠0

 < +∞.

And

E

(∫ S

0

e2ρs|Zs|2ds

)r/2

+

(∫ S

0

e2ρs
∫
E
|Us(e)|2π(de, ds)

)r/2

+

(∫ S

0

e2ρsd[M ]s

)r/2


≤ CE

[
erρS |ξ|p +

∫ S

0

erρs|f(s, 0, 0,0)|rds

]
.

The constant C depends only on r, K and χ.

In general (1.11) is not easy to check. Nonetheless, if ξ is bounded, we can take ν = 0

in (1.11) and assume that:

E
[∫ S

0

erρt|f(t, ξt, ηt, γt)|rdt
]
< +∞,
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where ξt = E(ξ|Ft) and

ξ = E(ξ) +
∫ ∞

0

ηsdWs +

∫ ∞

0

∫
E
γs(e)π̃(de, ds) +NS.

1.4 Supersolutions for singular terminal conditions

To lighten the presentation, in the rest of the thesis, ξ is supposed to be non-negative.

Theorem 1 gives sufficient conditions to ensure the existence and uniqueness of the

classical solution (Y, Z, U,M). When the terminal condition is singular, that is if ξ

does not belong to any Lp(Ω) for some p > 1, we adopt the following definition.

Definition 2 (Supersolution for singular terminal condition). We say that a quadruple

of processes (Y, Z, U,M) is a supersolution to the BSDE (1.1) with singular terminal

condition YS = ξ ≥ 0 if it satisfies:

1. There exists some ℓ > 1 and an increasing sequence of stopping times Sn

converging to S such that for all n > 0 and all t ≥ 0

E

[
sup
r∈[0,t]

|Yr∧Sn|ℓ +
(∫ t∧Sn

0

|Zr|2dr
)ℓ/2

+

(∫ t∧Sn

0

∫
E
|Ur(e)|2π(de, dr)

)ℓ/2
+ [M ]

ℓ/2
t∧Sn

]
< +∞;

2. Y is non-negative;

3. for all 0 ≤ t ≤ T and n > 0:

Yt∧Sn = YT∧Sn +

∫ T∧Sn

t∧Sn

f(u, Yu, Zu, Uu)du−
∫ T∧Sn

t∧Sε

ZudWu

−
∫ T∧Sn

t∧Sn

∫
E
Uu(e)π̃(de, du)−

∫ T∧Sn

t∧Sn

dMu. (1.12)

4. On the set {t ≥ S}: Yt = ξ, Z = U =M = 0 a.s. and (1.2) holds:

lim inf
t→+∞

Yt∧S ≥ ξ, a.s.

13



We say that (Y, Z, U,M) is a minimal supersolution to the BSDE (1.1) if for any other

supersolution (Y ′, Z ′, U ′,M ′) we have Yt ≤ Y ′
t a.s. for any t > 0.

Remark 3. The non-negativity condition can be replaced in general by: Y is bounded

from below by a process Ȳ such that E supt≥0 |Ȳt∧S|ℓ < +∞.

The below definition formally introduces the concept of a solvable time; as we already

indicated above, we think that it provides a general and natural framework for the

study of BSDE (1.1) with singular terminal conditions when the terminal time is

random:

Definition 3. A stopping time S will be called solvable with respect to the BSDE (1.1)

if the filtration F is left-continuous at time S and if the BSDE (1.1) has a supersolution

on the time interval [[0, S]] with terminal condition YS = ∞ that is defined as the limit

of the solution of the same BSDE with terminal condition equal to the constant k, as

k tends to ∞.

Most of our arguments will be based on solvable stopping times. From [22], we know

that every deterministic time S is solvable provided Conditions (A) (given above), and

(B1), (B2) (given below) hold. Exit times of diffusions from smooth domains provide

another example of a solvable stopping time, see Theorem 2 below (a restatement of

[22, Theorem 2] in terms of solvable times). [22, Example 1] shows that any stopping

time that has a strictly positive density around 0 is non-solvable. Section 3 lists some

immediate consequences of the definition above that will be useful in the rest of work.

Definition 4. Let T denote the set of all stopping times of the filtration F. The left

limit Fσ− of a filtration at the stopping time σ is defined as

Fσ− = σ

( ⋃
τ∈T ,τ<σ

Fτ

)
.
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We say that F is left continuous at σ if Fσ− = Fσ.

1.4.1 Additional conditions on f

For a singular terminal value ξ, the conditions (1.8) and (1.11) are false. Hence

following [22], we add some hypotheses concerning the generator f and the terminal

random time S.

(B1) There exists a constant q > 1 and a positive and bounded process η such that

for any y ≥ 0

f(t, y, z, ψ) ≤ − y

ηt
|y|q−1 + f(t, 0, z, ψ).

(B2) The process f 0 is bounded2.

(B3) There exists δ > δ∗ such that E
[
eδS
]
< +∞. The constant δ∗ depends on χ,

Lz and Lϑ.

(B4) There exists m > m∗ such that for any j

E
[∫ S

0

|Υt(j)|mdt
]
< +∞.

The value of m∗ depends on χ, Lz and Lϑ and also on δ and δ∗.

We further suppose that the generator (t, y) 7→ −y|y|q−1/ηt satisfies assumptions (A)

and (B), which means that η satisfies:

[
E
∫ T

0

1

ηmt
dt

]
< +∞. (1.13)

2 ξ is non-negative; in general we should assume that ξ− is bounded.
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The values of δ∗ andm∗ are given in [22]. Let us simply recall that if y 7→ f(t, y, z, ψ)

is non-increasing, that is for χ = 0, then we have:

δ∗ = 2K2, m∗ =
2δ

δ − 2K2
.

1.5 Known results for exit times

Let (Y (k), Z(k), ψ(k),M (k)) be the unique solution of the BSDE: for any t < T

Y
(k)
t∧S = Y

(k)
T∧S +

∫ T∧S

t∧S
f(u, Y (k)

u , Z(k)
u , U (k)

u )du

−
∫ T∧S

t∧S
Z(k)
u dWu −

∫ T∧S

t∧S

∫
E
U (k)
u (e)π̃(de, du)−

∫ T∧S

t∧S
dM (k)

u , (1.14)

with the truncated terminal condition:

P− a.s., on the set {t ≥ S}, Y
(k)
t = ξ ∧ k, Z(k)

t = U
(k)
t =M

(k)
t = 0. (1.15)

From [22, Proposition 5], under (A), (B2), (B3) and (B4), there exists a unique solu-

tion (Y (k), Z(k), ψ(k),M (k)) to the BSDE (1.14) and (1.15). By the comparison prin-

ciple for BSDEs, the sequence Y (k) is non-decreasing and converges to some process

Y min .
= lim

k
Y (k) (1.16)

As in the case of deterministic terminal times, the key step in [22] in establishing that

Y min is a minimal supersolution to the BSDE (1.1) is to obtain an a priori estimate

on Y (k), independent of the constant k. In terms of the concept of solvable stopping

times introduced above in Definition 3, the role of the apriori estimate is to ensure

that the stopping time S is solvable. To have such an estimate, [22] restricts attention

to the case where S is the first hitting time of a diffusion, namely

S = SD = inf{t ≥ 0, Ξt /∈ D}, (1.17)
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where the forward process Ξ in Rd is the solution to the stochastic differential equa-

tion

dΞt = b(Ξt)dt+ σ(Ξt)dWt (1.18)

with some initial value Ξ0 ∈ Rd. The functions b : Rd → Rd and σ : Rd → Rd×d

satisfy a global Lipschitz condition: there exists some C > 0 such that

∀x, y ∈ Rd ∥σ(x)− σ(y)∥+ ∥b(x)− b(y)∥ ≤ C∥x− y∥. (1.19)

The domain D is an open bounded subset of Rd, whose boundary is at least of class

C2 (see for example [14, Section 6.2] for the definition of a regular boundary); Ξ0 is

assumed to be fixed and in D.

Note that the condition (B3) imposes some implicit hypotheses between the generator

f , the set D and the coefficients of the SDE (1.18). The [22, Lemma 2] details some

sufficient conditions on the coefficients b and σ.

We introduce the signed distance function dist : Rd → R of D, which is defined

by dist(x) = infy/∈D ∥x − y∥ if x ∈ D and dist(x) = − infy∈D ∥x − y∥ if x /∈ D.

[22, Proposition 6] is a Keller-Osserman type inequality (see [18, 29]): there exists a

constant C such that:

0 ≤ Y
(k)
t∧S ≤ Y min

t∧S ≤ C

dist(Ξt∧S)2(p−1)
. (1.20)

Constant p > 1 is the Hölder conjugate of q.

For n ≥ 1, define

Sn = inf

{
t ≥ 0, dist(Ξt) ≤

1

n

}
, (1.21)

where dist(Ξt) denotes the distance between the position of Ξ at time t and the bound-

ary of D. The main result [22, Theorem 2] (expressed in terms of solvable stopping

times) is:
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Theorem 2. If S is the exit time given by (1.17), and if F is left-continuous at time S,

under Assumptions (A) and (B), S is a solvable stopping time (Definition 3). More-

over there exists a minimal supersolution (Y min, Zmin, ψmin,Mmin) to BSDE (1.1)

with singular terminal condition Y min
S = ξ (Definition 2).
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CHAPTER 2

LITERATURE REVIEW

We begin this chapter with a brief discussion of applications of BSDE in mathematical

finance.

2.1 BSDE and applications in finance

To the best of our knowledge, linear BSDE appeared first in [5] in the study of

stochastic optimal control problems. BSDE as a stand alone concept on its own was

introduced in [31] which derived existence and uniqueness results for BSDE of the

form

dYt = −f(t, Yt, Zt)dt+ ZtdWt; YT = ξ, (2.1)

where f is a Lipschitz function. An early review article from 1997 is [10] which

discusses many applications of BSDE to mathematical finance and stochastic optimal

control and reviews central results in BSDE theory. A recent book that discusses

finance and actuarial applications of BSDE is [7]; we now give several application

examples from this work.
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In insurance models BSDE can arise as a model for payment processes:

P (t) =

∫ t

0

A(u)du+

∫ t

0

∫
R
C(u, s)N(du, ds) + ξ1t=T , (2.2)

where A(t) models premium payments, C(t, s)N(dt, ds) the claim payments (where

N models the times when the claims arise) and the terminal condition of the BSDE ξ

corresponds to payments made at maturity.

In finance, the value of a self financing portfolio having ∆t stocks at time t has the

form

dY (t) = r(t)̇Y (t)dt+∆(t)̇(µ(t)− r(t))S(t)dt+∆(t)̇σ(t)S(t)dW (t);

we observe that if we choose f(t, Yt, Zt) = −r(t)̇Y (t)−∆(t)̇(µ(t)− r(t))S(t) and

Z(t) = ∆(t)̇σ(t)S(t) the above process is of the form (2.1). If the self financing

portfolio targets a terminal value (as is done in option pricing) we have additionally

the terminal condition YT = ξ ∈ FT , which gives a BSDE.

In all of these works, the terminal conditions ξ is assumed to be integrable; when f

is nonlinear and has superlinear growth it turns out that ξ can be allowed to take the

value +∞. In this case the terminal value is said to be singular; this type of terminal

condition is also the subject of the present thesis. In the next section we discuss the

literature on this topic.

2.2 Singular terminal conditions

To the best of our knowledge, the first work to consider BSDE with singular terminal

values is [34], which focuses on drivers of the form

f(t, Yt, Zt) = f(t, Yt, 0) = −Yt|Yt|q. (2.3)
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It defines the notion of a minimal supersolution of the BDE (2.1) with the above

driver function when the terminal value ξ is singular (i.e, when P(ξ = ∞) > 0)

(the notion of a supersolution is defined in the previous chapter). For the proof of

continuity at terminal time, [34] focuses on the Markovian case, that is, ξ = g(ΞT )

where g : Rm → R+ is a measurable function, F∞ = {g = +∞} is closed and Ξ

is a Markov diffusion process whose drift and volatility satisfy Lipschitz and growth

conditions.

Subsequent to [34], [35] extended this analysis to the case when the terminal time is

given by hitting times of Ξ.

[21] further extended this analysis to the BSDE of the form:

dYt = −f(t, Yt, Zt, ψt)dt+ ZtdWt +

∫
E
ψt(e)π̃(de, dt) + dMt, (2.4)

where the main novelty is the generality of the filtration assumed (supporting at least

a multidimensional Brownian motion as well as a Poisson random measure). Many

of the assumptions and results of this thesis paper have been given in the previous

chapter.

2.3 Continuity results for BSDE with non-Markovian singular terminal condi-

tions

The case of non-Markovian singular terminal conditions was first studied in [37].

Here is the setup considered in this work: W is a single dimensional Brownian mo-

tion,

Ys = Yt +

∫ t

s

f(Yr)dr +

∫ t

s

ZrdWr. (2.5)
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with terminal conditions

YT = ∞ · 1{τ≤T} (2.6)

and

YT = ∞ · 1{τ>T}, (2.7)

where τ = inf{t > 0 : Wt /∈ [a, b]}, and

f(y) = −y|y|q−1. (2.8)

Under this setting it was shown that there are solutions to the BSDE (2.5) if p > 2 for

terminal value (2.6) and in scenario (2.7) if p > 1.

In [1], the above analysis is extended to a general driver and a filtration including a d-

dimensional Brownian motion W and a Poisson random measure π (like the current

thesis, [1] studies within the framework introduced in [21] and is summarized in

the previous chapter); the hitting time τ in terminal condition (2.6) is generalized to

any stopping time having a bounded density around the terminal time T and (2.7) is

generalized to YT = ∞ · 1AT
where At is a decreasing sequence of events adapted to

the filtration Ft and is continuous in probability at T . There are important connections

between the analysis in the present thesis and the analysis in [1]; these connections

are pointed out throughout the chapters that follows.

The work[27] study the same BSDE as in [21] and focuses on non-Markovian ter-

minal conditions that are smooth functions of ω. The smoothness assumption allows

this work to use functional Itô calculus to derive the continuity of the minimal super-

solution of the BSDE.
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2.4 BSDE with singular terminal values and control problems with constraints

Interestingly, BSDE with superlinear growth and singular terminal values reviewed

above arise naturally in stochastic optimal control problems with terminal constraints

modeling optimal liquidation of financial portfolios. The first paper in this connection

is [3], which shows that the value function of the following stochastic optimal control

problem can be represented by a BSDE with a singular terminal condition:

J(v(t)) = E
[∫ T

0

(αu|vu|p + βt|qu|p) du
]
, qs = qt +

∫ s

t

vudu, s > t, qT = 0, (2.9)

where α and β are FW -progressively measurable non-negative stochastic processes

and p > 1. The novel feature of this problem is the terminal constraint qT = 0. They

prove that the value function infv Jt(v) of the above control problem equals qpt Y min
t

where Y min is the minimal supersolution of the BSDE

dYt =

(
(p− 1)

Y q
t

αq−1
t

− βt

)
dt+ ZtdWt, (2.10)

where 1/q = 1−1/p, and terminal condition lim
t→T

Yt = ∞; the terminal condition cor-

responds exactly to the constraint qT = 0. They further proved that under integrability

conditions:

1. α ∈ L2(Ω× [0, T ],P , P
⊗

λ) and
1

αq−1
∈ L1(Ω× [0, T ],P , P

⊗
λ)

2. β ∈ L2(Ω× [0, t],P , P
⊗

λ) for all t < T and E
∫ T
0
(T − s)pβsds <∞,

BSDE (2.10) has a minimal super-solution ⟨Y, Z⟩. Furthermore, when α and β satisfy

these conditions, the optimal control is given as

q(t) = exp

(
−
∫ t

0

(
Ys
αs

)q−1

ds

)
. (2.11)
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The control problem (2.9) has the following finance interpretation: q is the position of

a trader in an asset, the goal of the trader is to optimally close the position at time T

(this corresponds to the constraint qT = 0). The α term in the cost function represents

transaction costs and the β term defines a measure of risk for the terminal wealth of

the trader (see Chapter 6 and [16] for how these interpretations arise).

The work [22] shows that the above results can be generalized as follows: the q

process is generalized to

Wt = w +

∫ t

0

Λrdr +

∫ t

0

∫
Θ

Υr(θ)π(dθ, dr),

and the cost function is generalized to

J(W ) = E
[∫ τ

0

(
αu|Λu|p + βu|Wu|p +

∫
Θ

ℵs(θ)|Υu(θ)|pµ(dθ)
)
du+ ξ|Wτ |p

]
The components of this cost function are the primary market trading cost, the risk

of having the position open, and slippage costs (cost of trading at jump times in the

secondary market or dark pool see[19]). If τ is either an exit or a deterministic time,

the BSDE associated with this cost process is of the form

dYt = (p− 1)
Y q
t

αq−1
t

dt+ F (t, Yt,Γt)dt− βtdt+

∫
Θ

Γ(θ)π̃(dθ, dt) + dMt. (2.12)

The condition for the existence of a minimal supersolution are:

1. If the terminal time τ is deterministic, then there is a super-solution for (2.12)

provided that α > 0, β ≥ 0 and for l > 1, E
[∫ T

0
(αt + (T − t)pβt)

ldt
]
< ∞

and E
[∫ T

0
1

αq−1dt
]
<∞.

2. In the event τ is an exit time, if E[eφτ ] < ∞ where ∃φ > µ(Θ), ∃K > αt >

0 & K > β and E
[∫ n

0
1

αq−1dt
]
+ E

[∫ τ
0

1
αm(q−1)dt

]
< ∞ then there is a super-

solution for (2.12)
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Under this backdrop,

W ∗
u = w exp

[
−
∫ u∧t

t

(
Yr
αr

)q−1

dr

]
exp

[∫ u∧t

t

∫
Θ

ln(1− ϱr(θ))π(dθ, dr)

]
is given as the optimal trading strategy where,

ϱr(θ) =
(Yu− + Γu(θ))

q−1

(Yu− + Γu(θ))q−1 +Υu(θ)q−1
.

In Chapter 6, we give an explicit solution to the stochastic optimal control problem

(2.9) and the related BSDE when the terminal time of the problem is chosen to be

τu = inf{t : Wt ≥ u}, which corresponds to full liquidation as soon as the price

process hits a target price u under the assumption that α is constant and β = 0.
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CHAPTER 3

SOLVABLE STOPPING TIME AND MINIMAL

SUPERSOLUTION

The next lemmas are useful consequences of the notion of solvable stopping times.

First, note that the left-continuity assumption of F at time S is true for example if S is

predictable and if F is a quasi-left continuous filtration: for any predictable stopping

time τ , we have Fτ− = Fτ . This property of the filtration rules out the possibility

that any of the involved processes has jumps at predictable, and a fortiori deterministic

times. An important example is the filtration generated by the Brownian motion W

and the orthogonal Poisson random measure π and S is given by (1.17).

Lemma 1. Assume that S is solvable and suppose that the generator f satisfies Con-

ditions (A). Then, the BSDE (1.1) has a minimal supersolution on the time interval

[[0, S]] with terminal condition YS = ∞.

Proof. The arguments can be found in [22, Propositions 4 and 7]. The adaptation is

straightforward in our setting since the arguments are not based on a particular form

of the stopping time S. Only left-continuity of the filtration is important. □
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Let us emphasize that Assumptions (B) are not necessary here, since solvability im-

plies existence of a supersolution. In the rest of the paper we denote the minimal

supersolution with terminal condition +∞ a.s. at time S by (Y ∞, Z∞, ψ∞,M∞).

Sometimes, if we want to stress the dependence w.r.t. S, (Y S,∞, ZS,∞, ψS,∞,MS,∞)

denotes it.

Lemma 2. Assume that S is solvable and suppose that the generator f satisfies Con-

ditions (A), (B2), (B3) and (B4). Then, the BSDE (1.1) with a singular terminal

value ξ at time S, has a minimal supersolution (Y min, Zmin, ψmin,Mmin) on the time

interval [[0, S]] with terminal condition Y min
S = ξ.

Proof. Let us denote by Y (k),∞, the first component of the solution of the BSDE (1.1)

with terminal condition k. Since S is solvable, and with (A), Y (k),∞ is an increasing

sequence converging to Y ∞.

Again from [22, Proposition 5], under (A), (B2), (B3) and (B4), there exists a unique

solution (Y (k), Z(k), ψ(k),M (k)) to the BSDE (1.14) and (1.15). By comparison prin-

ciple, a.s for any t ≥ 0

Y
(k)
t ≤ Y

(k),∞
t ≤ Y ∞

t .

Hence we obtain an upper estimate on Y (k), independent of k, which replaces the up-

per bound (1.20). Arguing now as in [22], the existence of (Y min, Zmin, ψmin,Mmin)

is obtain. □

Note that the main result of Theorem 2 is the solvability of the first exit time S. The

existence of (Y min, Zmin, ψmin,Mmin) comes from the preceding lemma.
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Before we move further, let us note the following:

Lemma 3. Suppose a stopping time β is solvable. Suppose (Y, Z, ψ,M) is a super-

solution of (1.1) with terminal condition ξ constructed as the limit of solutions with

terminal condition ξ ∧L. Then, the sequence βn in Definition 2 can be chosen so that

Yt ≤ n for t < βn. (3.1)

Proof. Let Y β,∞ denote the first component of the supersolution for terminal con-

dition ∞ and let β1,∞
n be the sequence of βn in Definition 2 for the same terminal

condition. It follows from (1.12) and (1.2) that Y β,∞ has càdlàg sample paths on

[[0, β]] and limt→∞ Y β,∞
t∧β = ∞. This implies that the hitting times

β2,∞
n

.
= inf{t : Y ∞,β

t∧β ≥ n} (3.2)

satisfy: β2,∞
n ≤ β and it is a non decreasing sequence. From the first property of a

supersolution, this sequence converges almost surely to β. Now suppose that β2,∞
N =

β for some N (and thus for any n ≥ N ). It would mean that Y β,∞ has a jump at time

β. In other words, the martingale parts have a jump at time β. But it is excluded in

the definition 3. Thus

β2,∞
n ↗ β as n↗ ∞. (3.3)

Then, if we replace the stopping times β1,∞
n in Definition 2 with β3,∞

n
.
= β1,∞

n ∧ β2,∞

all of the conditions of the definition remain valid; furthermore

Y β,∞
t ≤ n for t < β3,∞

n , (3.4)

holds. This proves the lemma for the terminal condition ∞. Let Y β,L denote the

solution of (1.1) with terminal condition Yβ = L. Then, by definition Y β,L
t∧β ↗ Y β,∞

t∧β .

29



This and (3.4)

Y β,L
t ≤ Y β,∞

t ≤ n for t < β3,∞
n . (3.5)

Let Y β,ξ be the supersolution of (1.1) with terminal condition Yβ = ξ. and let Y β,ξ∧L

be the solution of (1.1) with terminal condition Yβ = ξ ∧L. By the assumption of the

lemma

Y β,ξ∧L
t∧β ↗ Y β,ξ

t∧β (3.6)

as L ↗ ∞. By comparison principle for the solution of BSDE we have Y β,ξ∧L
t∧β ≤

Y β,L
t∧β . This, (3.5), (3.6), the definition (3.2) of β2,∞

n and letting L↗ ∞ imply

Y β,ξ
t ≤ Y β,∞

t ≤ n for t < β3,∞
n . (3.7)

Let β1,ξ
n be the sequence of stopping time appearing in the definition of the super-

solution Y β,ξ. Define β2,ξ
n

.
= β1,ξ

n ∧ β3,∞
n . From (3.1) and from the assumption that

β1,ξ
n ↗ β we infer β2,ξ

n ↗ β. This implies that if we replace β1,ξ
n with β2,ξ

n , all of the

conditions appearing in the definition of the supersolution Y ξ,β continue to hold; by

(3.7) this sequence of stopping times also satisfy

Y L,β
t ≤ Y ∞,β

t ≤ n for t < β2,ξ
n . (3.8)

This proves the lemma for the terminal condition ξ. □

If we work with the filtration FW generated by the Brownian motion, then the BSDE

(1.1) reduces to the following:

dYt = −f(t, Yt, Zt)dt+ ZtdWt. (3.9)

Corollary 1. In the Brownian filtration FW , if β is solvable, then (3.1) becomes:

Yt ≤ n for t ≤ βn. (3.10)
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Proof. Since the trajectories of Y are now continuous, (3.1) can be strengthened to

(3.10). □

Remark 4. The estimate (1.20) implies that Y min of (1.16) satisfies Y min
t ≤ Cn2(p−1)

almost surely if t ≤ Sn where Sn is as in (1.21). This property is a special case of the

above corollary.
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CHAPTER 4

TERMINAL CONDITION ξ1

In this chapter, we study terminal conditions of the form

ξ1 = ∞ · 1{τ≤S}

where τ is another stopping time. We know from [1, Section 2] that when S = T is

deterministic and τ has a bounded density around the terminal time T , the minimal

supersolution of the BSDE (1.1) with terminal condition ξ1 satisfies

lim
t→T

Y min
T = ξ1.

Our goal is to prove similar continuity results when S is a stopping time. For this

we will consider two approaches: the first is an extension of the approach taken in [1,

Section 2], section 4.1 focuses on this. We consider a new approach in the subsequent

subsection 4.2.

4.1 First approach: The use of a Constructed Auxiliary Upperbound

The approach of [1, Section 2] can be summarized as follows:

1. Let Y ∞ be the minimal supersolution of (1.1) on the interval [[0, S]] with termi-
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nal condition YS = ∞; define the auxilary terminal condition

ξ
(τ)
1 = 1{τ≤S}Y

∞
τ .

2. Prove

E
[(
ξ
(τ)
1

)ϱ]
<∞ (4.1)

for some ϱ > 1, in particular, ξ(τ)1 is not a singular terminal condition.

3. Let Ŷ u be the solution of a linear BSDE with terminal condition ξ(τ)1 whose

driver term is chosen to guarantee Y min ≤ Ŷ u (the superscript u stands for

upper bound).

4. Derive the continuity of Y min from that of Ŷ u.

Let us emphasize that (4.1) implies that P(τ = S) = 0. Indeed if not, then

E
[(
ξ
(τ)
1

)ϱ]
≥ E

[
1{τ=S} (Y

∞
S )ϱ

]
= +∞.

Now we state the next result in the context of stopping times.

Theorem 3. Assume that the stopping time S is solvable, such that Conditions (A)

and (B) hold. Let τ be a stopping time such that there exists ϱ large enough (depend-

ing on δ and δ∗ in (B3)) such that (4.1) holds. Then Y min is continuous at S, that is

a.s.

lim
t→+∞

Y min
t∧S = ξ1.

Proof. We follow the scheme developed in [1]. Since S is solvable, there exists a

minimal supersolution (Y ∞, Z∞, ψ∞,M∞) to the BSDE (1.1) with terminal condi-

tion +∞ at time S.
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First, we consider the (linear in y) generator

g(t, y, z, ψ) = χy + f(t, 0, z, ψ),

which satisfies all conditions (A), and the terminal value ξ(τ)1 at the random time S.

Note that ξ(τ)1 is Fτ∧S-measurable, thus FS-measurable. Let us check that (1.8) holds,

namely for some r > 1 and ρ > ν(r)

E
[
erρS|ξ(τ)1 |r +

∫ S

0

erρt|g(t, 0, 0,0)|rdt
]
< +∞.

Note that g(t, 0, 0,0) = f 0
t and (B2) holds. From the proof of [22, Proposition 5],

using (B3), there exists r > 1 and ρ > ν(r) such that rν(r) < δ. Hence we can find

γ > 1 such that E(erργS) < +∞. Hölder’s inequality leads to:

E
[
erρS|ξ(τ)1 |r

]
≤
(
EerργS

)1/γ (E|ξ(τ)1 |rγ∗
)1/γ∗

.

If ϱ ≥ rγ∗, then we deduce that E|ξ(τ)1 |rγ∗ < +∞ and (1.8) is satisfied.

Then we have to verify that (1.11) holds for ξ(τ)1 . This can be done by linearizing g

and using the same arguments as for (1.8). Applying Theorem 1 leads to the existence

and the uniqueness of the solution (Ŷ u, Ẑu, ψ̂u, M̂u).

We next prove that Ŷ u does serve as an upper bound on Y (k), the solution of the

BSDE (1.1) with terminal condition ξ1 ∧ k = k1τ≤S at time S: a.s. for any t ≥ 0

Y
(k)
t∧τ∧S ≤ Ŷ u

t∧τ∧S.

Indeed by comparison principle, Y (k) ≤ Y ∞. Hence, a.s. Y
(k)
τ∧S = Y

(k)
τ 1τ≤S ≤

Y ∞
τ 1τ≤S = ξ

(τ)
1 . Since f(t, y, z, ψ) ≤ g(t, y, z, ψ) by Condition (A1), we deduce the

wanted result.

We conclude using some linearization procedure (see [1, Lemma 3]) that a.s. on the
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FS-measurable set {τ > S}, that

lim
t→+∞

Ŷ u
t∧S = 0.

Thereby a.s. on the same set

0 ≤ lim
t→+∞

Y min
t∧S ≤ lim

t→+∞
Ŷ u
t∧S = 0 = ξ1.

The continuity is proved. □

Let us develop an example. Let us assume that S is the first exit time of Ξ given by

(1.17), S = SD = inf{t ≥ 0, Ξt /∈ D}, such that there exists a constant C such

that (1.20) holds:

0 ≤ Y ∞
t∧S ≤ C

dist(Ξt∧S)2(p−1)
.

We also suppose that σ is uniformly elliptic:

∀x ∈ Rd, σσ∗(x) ≥ αId, (4.2)

which implies, for Ξ0 = x ∈ D, Ξt has a density ϕ(t, x, ·) [13]. Under this assump-

tion, to prove (4.1) it suffices to prove

E
[
1{τ≤S}

1

dist(Ξτ )ϱ2(p−1)

]
<∞, (4.3)

for some ϱ > 1. Theorem 3 above gives:

lim
t→∞

Y min
t∧S = ξ1,

assuming (4.3).

The expectation in (4.3) depends on the joint distribution of (τ, S,ΞS). We are not

aware of results available in the current literature that would imply (4.3) under broad
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and general assumptions on these variables. A basic case that can be treated with

techniques that we know of is when τ is independent of Ξ (and therefore of S). The

next proposition proves (4.3) under this setting.

Proposition 1. Suppose that S is the first exit time of Ξ given by (1.17), that σ is

uniformly elliptic, and that τ is independent of Ξ. If q > 1 + 2ϱ, then

E
[
1{τ≤S}

1

dist(Ξτ )ϱ2(p−1)

]
<∞, (4.4)

Proof. The equality 1/p + 1/q = 1 and q > 1 + 2ϱ imply 2(p − 1)ϱ < 1. Let us

denote the distribution of τ by Fτ . The expectation (4.3) can then be written as

E
[
1{τ≤S}

1

dist(Ξτ )ϱ2(p−1)

]
=

∫ ∞

0

E
[
1{t≤S}

1

dist(Ξt)ϱ2(p−1)

]
dFτ (t).

Since S is the exit time of Ξ from a smooth domain with uniformly elliptic diffusion

matrix, we have:

E
[
1{τ≤S}

1

dist(Ξτ )ϱ2(p−1)

]
=

∫ ∞

0

E
[
1{t<S}

1

dist(Ξt)ϱ2(p−1)

]
dFτ (t)

that {Ξt ∈ D} ⊃ {t < S} implies

≤
∫ ∞

0

E
[
1{Ξt∈D}

1

dist(Ξt)ϱ2(p−1)

]
dFτ (t). (4.5)

We next bound

E
[
1{Ξt∈D}

1

dist(Ξt)ϱ2(p−1)

]
.

For Ξ0 = x ∈ D, let ϕ(t, x, ·) be the density of Ξt. The expectation above then can

be written as

E
[
1{Ξt∈D}

1

dist(Ξt)ϱ2(p−1)

]
=

∫
D

ϕ(t, x, y)
1

dist(y)ϱ2(p−1)
dy. (4.6)

Define Dϵ = {x ∈ D : dist(x) ≤ ϵ} for ϵ > 0; by [14, Lemma 14.16] there exists

ϵ′1 > 0 such that dist is C2 in Dϵ′1
. Therefore one can choose ϵ1 ∈ (0, ϵ′1] so that dist
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is smooth on Dϵ1 and x /∈ Dϵ1 . The continuity of dist implies that Dϵ is closed; Dϵ is

therefore compact since Dϵ ⊂ D and D is bounded. This, the continuity of dist and

x /∈ Dϵ1 imply

C1
.
= inf

y∈Dϵ1

|x− y| > 0. (4.7)

Since b and σ are Lipschitz continuous and since σ is uniformly elliptic, from [13,

page 16] we have the following Aronson’s estimate on ϕ(t, x, y) :

ϕ(t, x, y) ≤ C2

td/2
e−

λ0|y−x|2
4t .

This and (4.7) imply

ϕ(t, x, y) ≤ C2

td/2
e−

λ0C
2
1

4t ,

for y ∈ Dϵ1 . The right side of this inequality is continuous and bounded for t ∈ [0,∞].

Therefore,

C3
.
= sup

t∈[0,∞],y∈Dϵ1

ϕ(t, x, y) ≤ sup
t∈[0,∞],y∈Dϵ1

C2

td/2
e−

λ0C
2
1

4t <∞. (4.8)

We now decompose (4.6) into two integrals over Dϵ1 and D \Dϵ1:

E
[
1{Ξt∈D}

1

dist(Ξt)ϱ2(p−1)

]
=

∫
D

ϕ(t, x, y)
1

dist(y)ϱ2(p−1)
dy

=

∫
D\Dϵ1

ϕ(t, x, y)
1

dist(y)ϱ2(p−1)
dy.+

∫
Dϵ1

ϕ(t, x, y)
1

dist(y)ρ2(p−1)
dy

≤ 1

ϵ
2ϱ(p−1)
1

+

∫
Dϵ1

ϕ(t, x, y)
1

dist(y)ϱ2(p−1)
dy. (4.9)

the last inequality coming from: dist(y) > ϵ1 for y ∈ D \Dϵ1 .

It remains to bound the last integral. For this note that dist(̇) is C2 over Dϵ1 . Fur-

thermore, ∂D is the 0-level curve of dist(̇), in particular, for y ∈ ∂D, the gradi-

ent ∇dist(y) is normal to ∂D. ∂D is a C1 surface, with nonvanishing normal at

everypoint. It follows from these and the definition of dist(̇) that ∇dist(̇) satisfies
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|∇dist(y)| = 1 for y ∈ ∂D. Now define

Eϵ = {y ∈ D : dist(y) > ϵ} = D \Dε.

Since dist(̇) is C2(Dϵ1) implies that ∂Dϵ1 is a C2 bounded surface and that the func-

tion

A(ϵ) = Area(∂Eϵ)

is C1 over the interval [0, ϵ1]. In particular, it is continuous and satisfies

C4
.
= sup

ϵ∈[0,ϵ1]
A(ϵ) <∞. (4.10)

This and the definition of dist(̇) imply |∇dist(y)| = 1 for y ∈ ∂Dϵ for ϵ ≤ ϵ1. We are

now in a setting where we can apply the co-area formula [11, Theorem 5, page 713],

which gives

∫
Dϵ1

ϕ(t, x, y)
1

dist(y)ϱ2(p−1)
dy =

∫ ϵ1

0

(∫
∂Eϵ

ϕ(t, x, y)dS

)
1

ϵϱ2(p−1)
dϵ.

∂Eϵ ⊂ Dϵ1 and (4.8) imply

≤
∫ ϵ1

0

(∫
∂Eϵ

C3dS

)
1

ϵϱ2(p−1)
dϵ.

This and (4.10) give

≤ C3C4

∫ ϵ1

0

1

ϵϱ2(p−1)
dϵ.

Recall that ϱ2(p− 1) < 1. This and the last line imply

∫
Dϵ1

ϕ(t, x, y)
1

dist(y)ϱ2(p−1)
dy < C5, (4.11)

where

C5
.
= C3C4

∫ ϵ1

0

1

ϵϱ2(p−1)
dϵ <∞.
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The bound (4.11) we have just derived and (4.9) imply

E
[
1{Ξt∈D}

1

dist(Ξt)ϱ2(p−1)

]
≤ 1

ϵ
ϱ2(p−1)
1

+ C5.

This and (4.5) imply (4.4). □

For example, if f only depends on y and is non increasing (χ = 0), then it is sufficient

to have q > 3.

4.2 A new argument for ξ1 based on solvability

In the rest of the paper, to clearly state the ideas and for a less technical presentation,

we will restrict our attention to the Brownian framework, i.e., we assume that F = FW

is the filtration generated by the d-dimensional Brownian motion W . Therefore, (1.1)

reduces to (3.9), that is:

dYt = −f(t, Yt, Zt)dt+ ZtdWt.

The continuity arguments in Section 4.1 above and in [1, Section 2] use the solution

of a linear auxiliary BSDE as an upper bound to the minimal supersolution. In this

section, we would like to explore a new upper bound that is based directly on the

original nonlinear BSDE. As will be seen, whenever applicable, this is more natural

and leads to less strict conditions on the parameter q of Condition (B1). We assume

τ and S to be solvable in the sense of Definition 3. Let Y S,∞ and Y τ,∞ denote the

∞-supersolutions1 corresponding to τ and S. The main idea of the present section as

compared to that of Section 4.1 and [1, Section 2] is the following: we replace the

upper bound process Ŷ u of the proof of Theorem 3 with Y τ,∞.
1 When we refer to Y as the solution, we mean the first component Y of a solution (Y,Z).
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Theorem 4. Suppose τ and S are solvable in the sense of Definition 3. Then a

supersolution Y min of (3.9) with terminal condition Y min
S = +∞ · 1{τ≤S} exists and

lim
t→∞

Y min
t∧S = +∞ · 1{τ≤S} = ξ1. (4.12)

Proof. By assumptions, there exists a supersolution Y S,∞ to the BSDE with terminal

condition YS = ∞ and this supersolution is the limit of processes Y (L) which are

solutions of the same BSDE with terminal condition YS = L. Let ξ ≥ 0 be an arbi-

trary terminal condition and let Y (L),ξ be the solution of (3.9) with terminal condition

YS = ξ ∧ L. Comparison with Y (L) imply that limL↗∞ Y (L) defines the minimal

supersolution Y min to (3.9) with terminal condition ξ. By assumption τ is solvable,

there exists a process Y τ,∞ that is a supersolution to the BSDE (3.9) with terminal

condition Yτ = ∞. Let τn be the sequence of increasing stopping times in Definition

2 associated with this supersolution and let Y τ,∞,L be the sequence of solutions of

(3.9) with terminal condition Yτ = L; by definition

Y τ,∞ = lim
L↗∞

Y τ,∞,L.

By Corollary 1, Y τ,∞ is bounded by n in the interval [[0, τn]].

Similarly, let Y S,ξ1,L be the sequence of solutions of the BSDE (3.9) with terminal

condition YS = ξ1 ∧ L = L · 1{τ≤S}.. We will now prove

Y S,ξ1,L
t ≤ Y τ,∞

t , t ≤ τn ∧ S. (4.13)

To prove this consider, for L1 > 0 the solution Y S,ξ1,L,L1 of the BSDE (3.9) with

terminal condition Yτ∧S =
(
Y S,ξ1,L
τ 1{τ≤S}

)
∧ L1 = (Y S,ξ1,L

τ ∧ L1)1{τ≤S}, which

is Fτ∧S-measurable. We will compare this process with Y τ,L1 , the solution of (3.9)

with terminal condition Yτ = L1, on the time interval [[0, τ ∧S]]. By its definition, the
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terminal value of Y S,ξ1,L,L1 at time τ ∧ S equals,

Y S,ξ1,L,L1

τ∧S = (Y S,ξ1,L
τ ∧ L1)1{τ≤S}

which is bounded by

L11{τ ≤ S}. (4.14)

Again by definition

Y τ,L1

τ∧S = Y τ,L1
τ 1{τ≤S} + Y τ,L1

S 1{S<τ}

= L1 + Y τ,L1

S 1{S<τ}.

It follows from this Y τ,L1 ≥ 0 and (4.14) that

Y S,ξ1,L,L1

τ∧S ≤ Y τ,L1

τ∧S . (4.15)

The processes Y S,ξ1,L,L1 and Y τ,L1 are solutions of the (3.9) on the interval [[0, τ ∧S]]

(in the sense of Theorem 1). This fact, τn ∧ S ≤ τ ∧ S, the inequality (4.15) and the

comparison principle for BSDE imply

Y S,ξ1,L,L1
t ≤ Y τ,L1

t , for t ∈ [[0, τn ∧ S]].

Letting L1 ↗ ∞ gives (4.13). Recall that Y τ,∞ is bounded by n in the interval

[[0, τn]]. This and (4.13) implies the same bound for Y S,ξ1,L. Letting L ↗ ∞ we

discover that the process Y S,ξ1 is a solution of (3.9) in the interval [[0, τn ∧ S]] with

terminal condition

ξ11{S<τn} + Y S,ξ1
τn 1{τn≤S} = Y S,ξ1

τn 1{τn≤S} ≤ n.

In particular, Y S,ξ1 is continuous on [[0, τn ∧ S]] and satisfies

lim
t→∞

Y S,ξ1
t∧τn∧S = Y S,ξ1

τn∧S −∆Y S,ξ1
τn∧S.
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Now over the event {τn > S}, Y S,ξ1
τn∧S = 0, and since the filtration is continuous at

time S, there is no jump at time S. Thus over the event {τn > S}

lim
t→∞

Y S,ξ1
t∧τn∧S = 0.

Since Y S,ξ1 = Y min, and
∞⋃
n=1

{τn > S} = {τ > S}

implies (4.12). □

4.3 An example in one space dimension

In this section we go back to the setup studied in [37, Section 2]: the driver is deter-

ministic and only a function of y:

f(y) = −y|y|q−1,

the terminal time S is deterministic T and the terminal condition is

YT = ∞ · 1{τ≤T}, (4.16)

where τ is the first exit time of W from the interval (0, L). Note that, since f is deter-

ministic and since the terminal conditions only depend onW , the solution (Y, Z, ψ,M)

of the BSDE (1.1) is reduced to (Y, Z, 0, 0) and the BSDE can be reduced to:

Ys = Yt +

∫ t

s

f(Yr)dr +

∫ t

s

ZrdWr. (4.17)

Theorem 2.1 of [37] states that for q > 2 the minimal supersolution of the BSDE

(4.17) with terminal condition (4.16) is continuous at time T . Let yt denote the solu-

tion of dy
dt

= −f(y) on the interval [0, T ] with terminal value yT = ∞, i.e.,

yt
.
= ((q − 1)(T − t))1−p, t < T, 1/p+ 1/q = 1. (4.18)
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The proof of [37, Theorem 2.1] is based on the following integrabilty result:

E[yτ1{τ≤T}] = E[yτ1{τ<T}] <∞. (4.19)

As in the proof of Theorem 3, [37] constructs a linear process that is continuous at

time T to find a continuous upperbound on the minimal supersolution (which implies

the continuity of the minimal supersolution); the bound (4.19) ensures that the upper

bound linear process is well defined. The bound (4.19) requires q > 2 and that is

the reason why this was assumed in [37] in its treatment of the terminal condition

(4.16). We will now derive the same continuity result under the assumption q > 1

using Theorem 4 above.

To apply Theorem 4 to the present setup we need T and τ to be solvable. This

essentially means that the BSDE has supersolutions with terminal value ∞ at these

terminal times. The supersolution for terminal time T is the deterministic process

t 7→ yt. The fact that τ is solvable can be derived from (1.20). Instead of invoking

this general result, in the following lemma we will make use of the simple nature

of f and W to explicitly construct the supersolution Y τ,∞ with terminal condition

Yτ = ∞. Following [33, page 307] we will use

x(v, vl)
.
= v

1− q+1
2

l

(
q + 1

4

)1/2 ∫ v/vl

1

(
uq+1 − 1

)−1/2
du. (4.20)

to construct solutions to the ODE

1

2
Vxx − V q = 0. (4.21)

The function x is strictly increasing in v, furthermore, q > 1 implies x(∞, vl) < ∞.

Define

L(vl) = x(∞, vl).
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Let x−1(·, vl) denote the inverse of x(·, vl). Now define

v(x, vl)
.
= x−1(|x− L/2|, vl).

Lemma 4. On the interval [L/2 − L(vl), L/2 + L(vl)], v(·, vl) satisfies (4.21) with

boundary conditions ∞ on both sides.

Proof. If g(u) is the inverse function of f(x), then we have, g(f(x)) = x. By differ-

entiating both sides we derive:

g′(f(x))f ′(x) = 1 ⇐⇒ f ′(x) =
1

g′(f(x))
.

Using this identity we have:

f ′′(x) =
d

dx
f ′(x) =

d

dx

(
1

g′(f(x))

)
= −g

′′(f(x))f ′(x)

g′(f(x))2
= − g′′(f(x))

g′(f(x))3
= − g′′(u)

g′(u)3
.

Therefore:

vxx = −xvv
x3
v

= 2
vq

vl
.

By letting vl = 1, we have 1
2
vxx = vq. Furthermore, since [L/2 − L(vl), L/2 +

L(vl)] ⊆ R(x), then [L/2−L(vl), L/2 +L(vl)] ⊆ D(v). Since L(l) = x(∞, l) we

have the boundary conditions ∞ satisfied.

□

To construct a supersolution of (4.17), we want to solve (4.21) in the interval [0, L]

with ∞ terminal conditions. Note that L(0) = ∞ and L(∞) = 0 and L is a de-

creasing smooth function. It follows that there is a unique v∗ such that L(v∗) = L/2.

Then for vl = v∗, v(x, v∗) solves (4.21) in the interval [0, L] with ∞ terminal con-

ditions. For our argument we also need solutions to (4.21) in the time interval [0, L]
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Figure 4.1: Solution for ODE 4.21 when v1 = 1, and q = 1.4

with boundary condition n on both sides. For this purpose, the next lemma constructs

a sequence 0 < vn ↗ v∗ such that x(n, vn) = L/2.

Lemma 5. There exists a sequence 0 < vn ↗ v∗ such that x(n, vn) = L/2.

Proof. Recall that v∗ is the unique solution of x(∞, v∗) = L/2, i.e.,

(v∗)1−
q+1
2

(
q + 1

4

)1/2 ∫ ∞

1

(
uq+1 − 1

)−1/2
du = L/2.

This implies in particular

x(1, v∗) = (v∗)1−
q+1
2

(
q + 1

4

)1/2 ∫ 1/v∗

1

(
uq+1 − 1

)−1/2
du < L/2.

Furthermore, the function vl 7→ x(1, vl) is continuous on (0, v∗] and increases to ∞

as vl ↘ 0. This implies that there exists v1 < v∗ satisfying x(1, v1) = L/2. Now note

x(2, v1) > L/2 and x(2, v∗) < L/2. Applying the same argument gives v2 ∈ (v1, v
∗)

satisfying x(2, v2) = L/2. Repeating the same argument inductively gives us an in-

creasing sequence vn bounded by v∗ solving x(n, vn) = L/2. The limit v∗∗ of this
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sequence satisfies x(∞, v∗∗) = L/2. Recall that v∗ is the unique solution of this

equation. This yields vn ↗ v∗. □

We can now state and prove the generalization of [37, Theorem 4] to q > 1:

Theorem 5. For q > 1 the minimal supersolution of (4.17) with terminal condition

YT = ∞ · 1{τ≤T} is continuous at time T .

Proof. By the previous lemma there exists vn ↗ v∗ that solves x(n, vn) = L/2.

It follows from this and Lemma 4 that v(·, vn) solves (4.21) on [0, L] with terminal

condition n on both sides and that v(·, vn) → v(·, v∗). The comparison principle for

the equation (4.21) implies that in fact v(·, vn) ↗ v(·, v∗). Now define the processes

Y τ,n
t = v(Wt, vn), Y

τ,∞
t = v(Wt, v

∗).

(3.9) Itô’s formula implies that Y τ,n
t solves (4.17) with terminal condition Yτ = n.

Define τn to be the first time W hits [1/n, L − 1/n]. Itô’s formula implies Y τ,∞ sat-

isfies (1.12) (with βn = τn) and the definition of v(·, v∗) and the continuity of the

sample paths of W imply (1.2) with ξ = ∞. Therefore, Y τ,∞ is a supersolution of

(4.17) with terminal condition Yτ = ∞. Furthermore, v(·, vn) ↗ v(·, v∗) implies

Y τ,n
t ↗ Y τ,∞

t . These imply that τ satisfies all of the conditions of being solvable. T

is also solvable because it is deterministic. Theorem 4 now implies the statement of

the present theorem. □
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4.4 A numerical example

From The proof of 4 we have the following identities:

vx = 2

(
(vq+1 − 1)

q + 1

)1/2

and vxx = 2vq.

Let dYt = σdWt. and apply Itô formula to v(x, 1), we derive:

v(Yt) = ξ +

∫ T∧τ

t

σ2vq(Ys)ds+

∫ T∧τ

t

2σ

(
(vq+1(Ys)− 1)

q + 1

)1/2

dWs.

For a discrete model,where dYt =
√
∆tdWt, We have:

v(Yn) = ξ +
n∧τ∑
s=1

vq(Ys−1)∆s
2 + 2

n∧τ∑
s=1

√
∆s

(
(vq+1(Ys−1)− 1)

q + 1

)1/2

dWs.

Further, we assumed that ∆t = 1/10000, q = 1.4, ξ = 5 This results in ±L =

±3.5307. The Graphs below models Yt When τ < S and τ ≥ S (here S = T is

deterministic time).

0 0.5 1 1.5 2
0

10

20Yt

30

40

BSDE Yt = v(Wt, vl) & Underline Filtration Process W (t)

t

0 0.5 1 1.5 2
-1.5

-1

-0.5
0

0.5
1

1.5
Underline Filtration Process Wt

t

Wt

Figure 4.2: Simulation 1: The W process remains within the ±L band.
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Figure 4.3: Simulation 2: The W process exits the ±L band and terminates the at
time τ .
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CHAPTER 5

TERMINAL CONDITION ξ2

In this chapter, we examine the terminal condition ξ2 = ∞ · 1{τ>S} by assuming S

is solvable. This means that there exists a minimal supersolution Y S,∞ ≥ 0 to (3.9)

with terminal condition Y S,∞
S = ∞ and a sequence of stopping times Sn ↗ S such

that Y S,∞
t ≤ n for t ≤ Sn. (Definitions 2 and 3, Lemma 1 and Corollary 1).

Our continuity result is as follows:

Theorem 6. Suppose S is solvable and τ is an arbitrary stopping time such that

P(S = τ) = 0. Then the BSDE (3.9) has a supersolution in the time interval [[0, S]]

with terminal condition YS = ξ2 = ∞ · 1{τ>S}. Furthermore this supersolution is

continuous at S:

lim
t→∞

YS∧t = ξ2. (5.1)

This generalizes [1, Theorem 2] which assumes deterministic terminal times, to ran-

dom terminal times. The main idea of the proof of [1, Theorem 2] generalized to

the current setup is as follows: we construct a sequence of supersolutions to (3.9)

with terminal conditions YS = ∞ · 1{τ>Sn} where Sn is the sequence of stopping

times approximating S. Note that these processes are all defined over the time in-
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terval [[0, S]], Sn < S allows one to prove they are all continuous at time S. This,

∞ · 1{τ>Sn} ≥ ∞ · 1{τ>S} and comparison principle for BSDE allow one to argue

that Y S,ξ2 is also continuous at S, which is the result we seek.

Let us define several processes that will be useful in the proof of Theorem 6, as solu-

tion of the BSDE (3.9) over the time interval [[0, S]], changing the terminal condition

at time S:

• Y S,L corresponds to the terminal condition L ;

• Y S,0 to the terminal condition 0 ;

• Y S,ξ2,L,n to the terminal condition L · 1{τ>Sn}.

Note that these terminal conditions are FS-measurable and bounded. Hence from

Theorem 1 and the conditions (B), these solutions are well defined and unique (in the

sense of Definition 1).

Let Y Sn,ξ2,L be the solution of (3.9) in the time interval [[0, Sn]] with terminal condition

YSn = Y S,L
Sn

· 1{τ>Sn} + Y S,0
Sn

· 1{τ≤Sn}.

The existence and uniqueness of Y Sn,ξ2,L comes from the estimates on Y S,L and Y S,0

in Theorem 1. We begin our argument with the following lemma.

Lemma 6. The process Y S,ξ2,L,n has the following structure:

Y S,ξ2,L,n
t = Y Sn,ξ2,L

t 1t≤Sn + Y S,0
t · 1t>Sn · 1τ≤Sn + Y S,L

t · 1t>Sn · 1τ>Sn . (5.2)

Proof. First, Sn < S implies that the right side of (5.2) defines an adapted and con-

tinuous process, denoted by Y , with bounded terminal condition YS = L · 1{τ>Sn}.
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Let us show that Y satisfies also (3.9). We define similarly:

Zt = ZSn,ξ2,L
t 1t≤Sn + ZS,0

t · 1t>Sn · 1τ≤Sn + ZS,L
t · 1t>Sn · 1τ>Sn .

For any 0 ≤ t ≤ T , let us distinguish several cases:

• If 0 ≤ t ≤ T ≤ Sn < S, then since Y Sn,ξ2,L solves (3.9) on [[0, Sn]]:

Yt∧S = Y Sn,ξ2,L
t = Y Sn,ξ2,L

T +

∫ T

t

f(u, Y Sn,ξ2,L
u , ZSn,ξ2,L

u )du−
∫ T

t

ZSn,ξ2,L
u dWu

= YT∧S +
∫ T∧S

t∧S
f(u,Yu, ZSn,ξ2,L

u )du−
∫ T∧S

t∧S
ZSn,ξ2,L
u dWu.

• If Sn < t ≤ T , then

Yt∧S = Y S,0
t∧S · 1τ≤Sn + Y S,L

t∧S · 1τ>Sn

= YT∧S +
∫ T∧S

t∧S

[
f(u, Y S,0

u , ZS,0
u ) · 1τ≤Sn + f(u, Y S,L

u , ZS,L
u ) · 1τ>Sn

]
du

−
∫ T∧S

t∧S

[
ZS,0
u · 1τ≤Sn + ZS,L

u · 1τ>Sn

]
dWu

= YT∧S +
∫ T∧S

t∧S
f(u,Yu, ZS,0

u · 1τ≤Sn + ZS,L
u · 1τ>Sn)du

−
∫ T∧S

t∧S

[
ZS,0
u · 1τ≤Sn + ZS,L

u · 1τ>Sn

]
dWu

since both sets {τ ≤ Sn} and {τ < Sn} are FSn-measurable.

• If 0 ≤ t ≤ Sn < T , then

Yt∧S = Y Sn,ξ2,L
t = YSn +

∫ Sn

t∧S
f(u,Yu, ZSn,ξ2,L

u )du−
∫ Sn

t∧S
ZSn,ξ2,L
u dWu

= Y S,0
Sn

· 1τ≤Sn + Y S,L
Sn

· 1τ>Sn

+

∫ Sn

t∧S
f(u,Yu, ZSn,ξ2,L

u )du−
∫ Sn

t∧S
ZSn,ξ2,L
u dWu

= YT∧S +
∫ T∧S

Sn

f(u,Yu, ZS,0
u · 1τ≤Sn + ZS,L

u · 1τ>Sn)du

−
∫ T∧S

Sn

[
ZS,0
u · 1τ≤Sn + ZS,L

u · 1τ>Sn

]
dWu

+

∫ Sn

t∧S
f(u,Yu, ZSn,ξ2,L

u )du−
∫ Sn

t∧S
ZSn,ξ2,L
u dWu.
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Hence, we have verified that (Y ,Z) solves the BSDE (3.9). The statement of the

lemma follows from the uniqueness of such a solution (Theorem 1). □

We now give

Proof of Theorem 6. Let Y S,ξ2∧L be the solution of (3.9) with bounded terminal con-

dition YS = ξ2 ∧ L = L · 1{τ>S}. The inequality ξ2 ∧ L ≤ L implies

Y S,ξ2∧L
t ≤ Y S,L

t , t ≤ S.

This and Y S,L
t ≤ n for t ≤ Sn imply that, if we define

Y S,ξ2
t = lim

L↗∞
Y S,ξ2∧L
t ,

then Y S,ξ2 is a classical solution of (1.1) on the time interval [[0, Sn]]. The fact of (5.1)

holds over the event {ξ2 = ∞} = {τ > S} follows from that of Y S,ξ2 being con-

structed by approximation from below (see [34]). For completeness, we reproduced

this argument: note

lim inf
t→∞

Y S,ξ2
t∧S ≥ lim inf

t→∞
Y S,ξ2∧L
t∧S = ξ2 ∧ L

for all L. Letting L↗ ∞ implies

lim inf
t→∞

Y S,ξ2
t∧S ≥ ξ2.

In particular,

lim
t→∞

Y S,ξ2
t∧S = lim inf

t→∞
Y S,ξ2
t∧S = ξ2 = ∞

over the event {τ > S}. This proves (5.1) over the event {τ > S}.
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It remains to prove (5.1) over the event {τ ≤ S}. Recall the process Y S,ξ2,L,n of

(5.2) that is the solution of (3.9) over the interval [[0, S]] with terminal condition YS =

L · 1{τ>Sn}. Given Sn ≤ S implies

L · 1{τ>Sn} ≥ L · 1{τ>S}.

This and the comparison principle lead to

Y S,ξ2,L
t ≤ Y S,ξ2,L,n

t , for t ≤ S.

Lemma 6 implies

Y S,ξ2,L,n
t = Y S,0

t , for t ∈]]Sn, S]]

over the event {τ ≤ Sn}. Combining the last two displays we get

Y S,ξ2,L
t ≤ Y S,0

t , for t ∈]]Sn, S]]

over the event {τ ≤ Sn}. The right side of the last inequality doesn’t depend on L.

Taking limits on the left gives

Y S,ξ2
t ≤ Y S,0

t , for t ∈]]Sn, S]]

over the event {τ ≤ Sn}. The right side of the above inequality is a classical solution

of the BSDE (3.9) with 0 terminal condition. Therefore, taking limits of both sides

above give

lim sup
t→∞

Y S,ξ2
t∧S ≤ lim

t→∞
Y S,0
t∧S = 0.

By its construction, Y S,ξ2 ≥ 0. This and the last display imply

lim
t→∞

Y S,ξ2
t∧S = 0

over the event {τ ≤ Sn}. Finally, Sn ↗ S and P(τ = S) = 0 imply
⋃∞
n=1{τ ≤

Sn} = {τ ≤ S}. This and the last display imply

lim
t→∞

Y S,ξ2
t∧S = 0 = ξ2
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over the event {τ ≤ S}. This completes the proof of the theorem. □
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CHAPTER 6

AN APPLICATION TO OPTIMAL LIQUIDATION

A special case of the BSDE studied in chapter 4 arise in the optimal liquidation prob-

lem. In this chapter, we focus on the Brownian filtration case, i.e., we assume F is to

be the filtration generated by a single dimensional Brownian motion W .

We build on the Almgren-Chriss framework as presented in [16, Chapter 3]. Consider

an investor who wants to close a position q0 > 0 on a financial asset over a time

interval [0, T ]. Let qt denote the position of the investor at time t; q is assumed to be

differentiable:

qt = q0 +

∫ t

0

vsds.

The midprice of the asset at time t is assumed to be

St = S0 + S̄t + kqt, S̄t = σWt,

where k is the permanent market impact factor. Note that the price St consists of

two components: S̄ and q. The first of these represent the changes in price that is

independent of the investor. The market volume is assumed to be a constant V > 0.

The actual trading price is,

St +
V

vt
L(vt/V )
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where the second term models the execution cost of the trade at time t. As in [16] we

assume L to be quadratic, L(ρ) = ηρ2 which leads to the following trading price:

St + η
vt
V
.

The cash position generated by the trading curve q is then

Xt = −
∫ t

0

(Ss + η
vs
V
)vsds = −

∫ t

0

Ssvsds −
∫ t

0

η

V
v2sds. (6.1)

As in [16, Chapter 3], integration by parts gives∫ t

0

Ssvsds = Stqt − S0q0 −
∫ t

0

qsσdWs −
k

2
(q2t − q20).

We can then write (6.1) as

Xt = S0q0 − Stqt +

∫ t

0

qsσdWs +
k

2
(q2t − q20)−

∫ t

0

η

V
v2sds. (6.2)

All of the terms in this expression have natural interpretations: the first two represent

money made from the main price process, the third term is the gain or lost from the

fluctuations in price, the fourth term is the mundane lost from the permanent impact

of the trade on price and the last term is the money paid to transaction costs.

The goal of the investor is to close her position q0 before a given terminal time τ > 0

and in doing this maximizing her expected utility. This liquidation algorithm is known

as “implementation shortfall” (IS). The simplest utility function that can be used in

this formulation is the identity function which leads to the problem of maximizing

the expectation of the cash position. Assuming that E[τ ] <∞, the only term that can

be controlled in E[Xτ ] by choosing q are the expected transaction costs; thus, we are

lead to the following control problem:

min
q∈A

E

[∫ τ

0

η

V

(
dq

dt
(s)

)2

ds

]
, (6.3)
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where A = {q : q(0) = q0, q is differentiable, q(τ) = 0}. In the classical framework

treated in [16, Chapter 3] the terminal time is taken to be deterministic: τ = T .

For a < 0 < b, define τa,b = inf{t : S̄t /∈ (a, b)}. Considering the above problem with

terminal time τa,b corresponds to specifying the following constraint to the control

problem: liquidate before the initial price deviates b or −a from the initial price.

Note that E[τa,b] <∞ and therefore, indeed we have

E[Xτa,b ] = S0q0 − E

[∫ τ

0

η

V

(
dq

dt
(s)

)2

ds

]
,

and (6.3) is equivalent to maximizing E[Xτa,b ]. The functions and BSDE computed in

Section 4.3 give an explicit solution to this problem.

In this chapter we would like to consider another possibility: suppose that the investor

specifies an additional target price S0 + u, u > 0 that she considers to be attractive

and would like the position to be closed completely when this price is attained. The

upperbound can be specified either for S̄ or S. To relate the problem to the BSDE in

the previous chapters we focus on the case when the upperbound is specified on S̄,

the random component of the midprice that the investor cannot control. Define

τu = inf{t : S̄t ≥ u}.

We therefore propose the constraint qτu = 0, i.e., the investor would like to close the

position as soon as S̄ hits u.

Before we propose a solution, we would like to point out an important change that

happens in the nature of the problem when the terminal time is set to τu: because

E[τu] = ∞, we no longer have

E
[∫ τ

0

qsσdWs

]
= 0;
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this implies

E[Xτu ] ̸= S0q0 − E

[∫ τ

0

η

V

(
dq

dt
(s)

)2

ds

]
.

Therefore, minimization of expected transaction costs and maximization of expected

payoff are no longer equivalent problems. In the rest of this section we will focus on

the first problem, i.e., the minimization of transaction costs and offer a solution to this

problem.

Assume V (q0, s) = q20U(s). The BSDE corresponding to the above problem reduces

to

1

2
σ2Uss −

V

η
U2 = 0. (6.4)

We next solve the last ODE over the interval (−∞, u] with boundary condition

U(u) = ∞, U(−∞) = 0. (6.5)

Suppose V0 : [0,∞) 7→ R satisfies (6.4) on the interval [0,∞) with boundary condi-

tion V0(0) = ∞, V0(∞) = 0.

We note the following:

Lemma 7.

U(s) = V0(−s+ u)

satisfies (6.4) on the interval (−∞, u] and the boundary condition (6.5).

Proof.

Uss =
d2

ds2
V0(−s+ u) = − d

ds
(V0)s(−s+ u)

= (V0)ss(−s+ u) =
2V

σ2η
V 2
0 (−s+ u) =

2V

σ2η
U2(s)
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satisfying (6.4). U(s) is a reflection of V0 in the y-axis shifted u units to the right.

Therefore the domain for which U(s) coincides with that of V0(s) is on minus the

domain of V0 shifted u units to the right, i.e., −[0,∞) + u = (−∞, u].

U(u) = V0(−u+ u) = V0(0) = ∞ and U(−∞) = V0(∞+ u) = V0(∞) = 0

satisfying (6.5). □

The next proposition gives an explicit formula for V0:

Proposition 2. The minimal supersolution of (6.4) on [0,∞) with boundary condition

V0(0) = ∞, V0(∞) = 0 is

V0(s) =
3σ2η

V
s−2.

Proof. Let V0 = Csα satisfy (6.4). Then we have,

1

2
σ2α(α− 1)Csα−2 − V

η
C2s2α = 0.

C =
ησ2α(α− 1)

2V
s−(2+α)

therefore

V0 =
ησ2α(α− 1)

2V
s−2.

Resubstituting into (6.4), we have α(α−1) = 6, giving us V0(s) = 3σ2η
V
s−2, satisfying

(6.4) with boundary conditions V0(0) = ∞, V0(∞) = 0. Note that Vn(s) = V0(s+an)

is the classical solution of (6.4) with boundary conditions Vn(0) = n, Vn(∞) = 0.

Clearly, Vn ↗ V0, which proves the minimal supersolution property of V0. □
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By the above lemma and proposition, the minimal supersolution of (6.4) on (−∞, u]

with boundary conditions (6.5) is

U(s) =
3σ2V

η
(u− s)−2.

Then the value function of (6.3) for τ = τu equals

v(s, q) =

(
q

u− s

)2
3σ2V

η
.

By [22, Theorem 4], the corresponding optimal liquidation process is

q∗t = q0e
−

∫ t
0 U(S̄t)ds

-∞ u
0

∞

s

U
(s
)

Figure 6.1: Graph of the function U(s)

In figure 6.1, we see that U(s) is an increasing convex function which satisfies the

boundary conditions U(∞) = 0 and U(u) = ∞ as given in (6.5).

In figure 6.2, it is noted that as our S(t) process approaches u, we have our open posi-

tion terminating, somewhat abruptly, at τu, the first time S(t) hits the upper boundary
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Figure 6.2: Trading Strategy qt with the S(t) process

u. Conversely, in figure 6.3, S(t) does not go beyond u, resulting in an incomplete

dissolution of the portfolio since our target-price was not attained.

Furthermore, in figure 6.4, we consider how the strategy performed with varying

volatility (σ1 = 0.01, σ1 = 0.04, σ1 = 0.08). It can be observed that the trading

strategy closes the position faster in the case of a lager σ value than those with lower

ones. Events of a slight hint of S(t) approaching u, with a high σ value, our trading

curve dissolves the portfolio almost instantly. Whereas with a low σ value, it does

not budge until S(t) gets significantly closer to u. Hence, with an open positions with

high risk, the portfolio is closed quickly and somewhat gradually, while, though later

than those with high σ, less risky ones seems to be traded of later when S(t) in fact

approaches u, similar to case in figure 6.2 with an abrupt trade off to the end.

Additionally, considering the impact of total trading volumes, as is depicted in figure
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Figure 6.3: Trading Strategy qt does not liquidate completely as the process S re-
mains below u

6.5 (V1 = 100, V2 = 500, V3 = 1000), we see with high trading volumes, our portfolio

is dissolved quickly and our trading curves are convex in nature. On-the-other-hand,

with lower volumes, our trades are delayed to the end of the trading period with the

curve taking a concave shape close the end.

Moreover, in figure 6.6, we see that with varying initial positions that the trading

curve is a scaled identical curve of each other.

Finally, we consider the scenario with varying trading cost (η1 = 1, η2 = 3, η3 = 10).

Looking at figure 6.7, we observe that when there are low trading cost, our trading

curve begins the liquidation process earlier hence, there is less trading volumes close

to τu. In contrast, with higher ηs, trading is deferred with high liquefaction taking

place around τu.
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Figure 6.4: Trading Strategy with varying Volatility (σ1 < σ2 < σ3).
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Figure 6.5: Trading Strategy with Varying Volumes (V1 < V2 < V3).
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Figure 6.6: Trading Strategy with Varying Opening Position q0
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Figure 6.7: Trading Strategy with Varying Trading Cost (η1 < η2 < η3).
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CHAPTER 7

CONCLUSION

The present work develops solutions to the BSDE (1.1) with random terminal time

S for a range of singular terminal values. We do this by proving that the minimal

supersolution is continuous at S and attains the terminal value by constructing upper-

bound processes that are known to have the desired behavior at terminal time. A key

ingredient of our framework and our arguments is the concept of a solvable stopping

time with respect to the given BSDE and the filtration, introduced in the present work.

Solvability means that the the BSDE has a supersolution with value ∞ at the given

stopping time. We note that a stopping time that has a positive density around 0 is

not solvable. We also note that deterministic times as well as exit times of continuous

diffusion processes from smooth domains are solvable. A natural direction for future

work is to further understand the concept of solvability and identify other classes of

solvable/non-solvable stopping times.

In this thesis we, focused on non-Markovian terminal conditions. For furhter results

on BSDE with singular terminal conditions with a solvable terminal time, we refer to

[36] where results on Markovian terminal times as well as their connection to solution

of PDE with singular boundary conditions are also presented. The same work also
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presents results on the continuity of Y at terminal time S based on the left continuity

of the filtration at time S.

In Chapters 4 and 5, we focus on terminal values of the form ξ1 = ∞ · 1{τ<S} and

ξ2 = ∞ · 1{τ>S}; the arguments in the present work can be generalized to terminal

conditions of the form ξ1 = ∞·1{τ<S}+A ·1{τ≥S} and ξ2 = ∞·1{τ>S}+A ·1{τ≤S},

where A is a sufficiently integrable random variable. Such an extension is given

in [2] for deterministic terminal times. Another formulation explored in [2] for a

deterministic terminal time T is terminal conditions of the form ξ = ∞ · 1AT
where

At is a decreasing sequence of events adapted to the filtration Ft and is continuous in

probability at time T . A study of this formulation for solvable terminal times remains

for future work.

Technical analysis in finance consists of basing trading strategies on the use of resis-

tance and support levels as discussed in [4, 9, 12, 28]; perhaps the thresholds used in

the liquidation algorithm in Chapter 6 can be selected using these levels. An idea that

may be pursued is to allow u to vary in time and chosen to be trend lines or indicators.

Another idea for future research is the generalization of the computations in 6 to more

general price and trading dynamics.
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